Difference between revisions of "Pandas notes"
 (→Plot options)  | 
				|||
| Line 1: | Line 1: | ||
{{TocRight}}  | 
  {{TocRight}}  | 
||
Using [http://pandas.pydata.org/ Python Pandas package] for data analysis. Leo's notes.  | 
  Using [http://pandas.pydata.org/ Python Pandas package] for data analysis. Leo's notes.  | 
||
== Importing and setup ==  | 
|||
Some useful imports for the examples below:  | 
|||
 import pandas as pd  | 
|||
 import numpy as np  | 
|||
 import matplotlib.pyplot as plt  | 
|||
 import matplotlib  | 
|||
 matplotlib.rc('figure', figsize=(15, 5))  | 
|||
== Data manipulation ==  | 
  == Data manipulation ==  | 
||
| Line 44: | Line 53: | ||
Plotting with various parameters:  | 
  Plotting with various parameters:  | 
||
 p = mymean.plot(figsize=(15,5),legend=False,kind="bar",rot=45,color="green",fontsize=16,yerr=mystd);  | 
   p = mymean.plot(figsize=(15,5), legend=False, kind="bar", rot=45, color="green", fontsize=16, yerr=mystd);  | 
||
 p.set_title("RSSI", fontsize=18);  | 
|||
 p.set_xlabel("Tags", fontsize=18);  | 
|||
 p.set_ylabel("dBm", fontsize=18);  | 
|||
 p.set_ylim(0,-85);  | 
|||
Revision as of 14:04, 26 October 2017
Using Python Pandas package for data analysis. Leo's notes.
Importing and setup
Some useful imports for the examples below:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc('figure', figsize=(15, 5))
Data manipulation
Import data from a CSV file to a dataframe
df = pd.read_csv("filename.csv")
Filter the data by a field value
df2 = df.loc[df['Tagid'] == "1234"]
Get all unique values (for example, for the Tagid field)
allTags = df.Tagid.unique()
Pivot the table, where the values become columns. For example, to create a plot that uses unique values (of Tagid) as the series.
dfTags = df.pivot(columns='Tagid', values='RSSI')
Plot options
Define the colors of the plot data
df.plot(color="rgbk")
Different plot types (markers)
df.plot(marker='.')
Limit the X axis values:
df.plot(xlim=(0,4000))
Naming the axis
ax = df.plot() ax.set_ylabel(AntNames[x])
Placement of the legend (Below-left of the plot)
df.plot().legend(loc='upper left', bbox_to_anchor=(0, 0))
Removing the legend
ax = df.plot() ax.legend_.remove()
Plotting means and std: link
mymean = byTagAnt.RSSI.mean() mystd = byTagAnt.RSSI.std() mymean.plot(kind="bar", yerr=mystd);
Plotting with various parameters:
p = mymean.plot(figsize=(15,5), legend=False, kind="bar", rot=45, color="green", fontsize=16, yerr=mystd);
p.set_title("RSSI", fontsize=18);
p.set_xlabel("Tags", fontsize=18);
p.set_ylabel("dBm", fontsize=18);
p.set_ylim(0,-85);