
Operētajsistēmu inženierija

Multics

Kursu vada Leo Seļāvo

MULTICS

• 1964.g.: CTSS - Compatible Time-Sharing System
(Project MAC at MIT)

• 1965.g.-1969.g.: MULTICS
• 1969.g.: UNIX

• MULTICS = Multiplexed Information and
Computing Service

• Origin of many ideas in today's OSes
• Motivated UNIX design (often in opposition)

Mērķi:

• Convenient remote terminal access
• A view of continuous operation
• A wide range of capacity to allow growth or contraction without either

system or user reorganization
• A reliable file system that users trust their only copy of programs and data
• Sufficient control of access to allow selective sharing of information
• The ability to structure hierarchically both the logical storage of

information as well as the administration of the system
• The capability of serving large and small users without inefficiency to

either
• The ability to support different programming environments and human

interfaces within a single system
• The flexibility and generality of system organization required for evolution

through successive waves of technological improvements and the
inevitable growth of user expectations

Multics inženierija

• Galveno ideju izstrāde

• Detalizēta programmu moduļu specifikācija

• 3000 lapas - Multics System programmers’
Manual

• Realizācija PL/1 prog. Valodā

• Moduļu implementācija un integrācija un
testēšana

• Izrādījās, ka paredzamā izpilde būtiski atšķīrās no
reālās => vajadzēja papildus iterācijas izstrādei

Pieredze

• specifications representing less-important
features were found to be introducing much
of the complexity

• the initial choice of modularity and interfacing
between modules was sometimes awkward

• the most important property of algorithms is
simplicity rather than special mechanisms for
unusual cases

Idejas

• Modular division of responsibility

• Dynamic reconfiguration

• Automatically managed multilevel memory

• Protection of programs and data

• System programming language

Faili atmiņā
The entire storage
hierarchy may be mapped
into individual user
process address spaces
(see arrows) as if
contained in primary
memory. Illustrated are
the sharing of a supervisor
segment by user 1 and
user 2 and private access
to segment a and segment
b. The necessary primary
storage is simulated by a
demand paging technique
which moves information
between the real primary
memory and secondary
storage.

Modularitāte

Major lines of modular division in Multics. Solid lines indicate calls for
services. Dotted lines indicate implicit use of the virtual memory.

Dinamiskā
rekonfigurācija

Dynamic reconfiguration permits
switching among the three typical
operating configurations shown here,
without currently logged-in users being
aware that a change has taken place.

Hierarhiska atmiņas arhitektūra

Automatically managed multilevel memory

• A strategy to treat core memory, drum, and disk as a three-
level system has been proposed, including a "least-recently-
used" algorithm for moving information from drum to disk

• A scheme to permit experimentation with predictive paging
algorithms

• A series of measurements was made to establish the
effectiveness of a small hardware associative memory used
to hold recently accessed page descriptors.

• A set of models, both analytic and simulation, was
constructed to try to understand program behavior in a
virtual memory.

http://www.multicians.org/mgp.html
http://www.multicians.org/mgp.html
http://www.multicians.org/mgp.html

Aizsardzība: “Rings of Protection”

• A hardware architecture which implements the
mechanism was proposed. Subroutine calls from one
protection ring to another use exactly the same
mechanisms as do subroutine calls among procedures
within a protection area.

• As an experiment in the feasibility of a multilayered
supervisor, several supervisor procedures which
required protection, but not all supervisor privileges,
were moved into a ring of protection intermediate
between the users and the main supervisor.

Sistēmas programmēšanas valoda

• The transition from an early PL/I subset compiler to a newer compiler
which handles almost the entire language was completed. The
significance of the transition is the demonstration that it is not necessary
to narrow one's sights to a "simple" subset language for system
programming.

• Yet, the time required to implement a full PL/I compiler is still too great for
many situations in which the compiler implementation cannot be started
far enough in advance of system coding. For this reason, there is
considerable interest in defining a smaller language which is easily
compilable, yet retains the features most important for system
implementation.

• Roughly, of the 1500 system modules, about 250 were written in machine
language. Most of the machine language modules represent data bases or
small subroutines which execute a single privileged instruction.

http://www.multicians.org/mge.html

UNIX vs Multics

• UNIX was less ambitious (e.g. no unified
mem/FS)

• UNIX hardware was small

• just a few programmers, all in the same room

• evolved rather than pre-planned

• quickly self-hosted, so they got experience
earlier

What did UNIX inherit from MULTICS?

• a shell at user level (not built into kernel)

• a single hierarchical file system, with
subdirectories

• controlled sharing of files

• written in high level language, self-hosted
development

What did UNIX reject from MULTICS?

• files look like memory
– instead, unifying idea is file descriptor and read()/write()
– memory is a totally separate resource

• dynamic linking
– instead, static linking at compile time, every binary had copy of

libraries

• segments and sharing
– instead, single linear address space per process, like xv6
– (but shared libraries brought these back, just for efficiency, in

1980s)

• Hierarchical rings of protection
– simpler user/kernel
– for subsystems, setuid, then client/server and IPC

