
6.828 Lecture Notes: x86 and PC
architecture
Outline

• PC architecture
• x86 instruction set
• gcc calling conventions
• PC emulation

PC architecture
• A full PC has:

o an x86 CPU with registers, execution unit, and memory management
o CPU chip pins include address and data signals
o memory
o disk
o keyboard
o display
o other resources: BIOS ROM, clock, ...

• We will start with the original 16-bit 8086 CPU (1978)
• CPU runs instructions:
• for(;;){
• run next instruction
• }
• Needs work space: registers

o four 16-bit data registers: AX, CX, DX, BX
o each in two 8-bit halves, e.g. AH and AL
o very fast, very few

• More work space: memory
o CPU sends out address on address lines (wires, one bit per wire)
o Data comes back on data lines
o or data is written to data lines

• Add address registers: pointers into memory
o SP - stack pointer
o BP - frame base pointer
o SI - source index
o DI - destination index

• Instructions are in memory too!
o IP - instruction pointer (PC on PDP-11, everything else)
o increment after running each instruction
o can be modified by CALL, RET, JMP, conditional jumps

• Want conditional jumps
o FLAGS - various condition codes

 whether last arithmetic operation overflowed
 ... was positive/negative
 ... was [not] zero
 ... carry/borrow on add/subtract
 ... overflow
 ... etc.
 whether interrupts are enabled
 direction of data copy instructions

o JP, JN, J[N]Z, J[N]C, J[N]O ...
• Still not interesting - need I/O to interact with outside world

o Original PC architecture: use dedicated I/O space
 Works same as memory accesses but set I/O signal
 Only 1024 I/O addresses
 Example: write a byte to line printer:
 #define DATA_PORT 0x378
 #define STATUS_PORT 0x379
 #define BUSY 0x80
 #define CONTROL_PORT 0x37A
 #define STROBE 0x01
 void
 lpt_putc(int c)
 {
 /* wait for printer to consume previous byte */
 while((inb(STATUS_PORT) & BUSY) == 0)
 ;

 /* put the byte on the parallel lines */
 outb(DATA_PORT, c);

 /* tell the printer to look at the data */
 outb(CONTROL_PORT, STROBE);
 outb(CONTROL_PORT, 0);
 }

o Memory-Mapped I/O
 Use normal physical memory addresses

 Gets around limited size of I/O address space
 No need for special instructions
 System controller routes to appropriate device

 Works like ``magic'' memory:
 Addressed and accessed like memory, but ...
 ... does not behave like memory!
 Reads and writes can have ``side effects''
 Read results can change due to external events

• What if we want to use more than 2^16 bytes of memory?
o 8086 has 20-bit physical addresses, can have 1 Meg RAM
o each segment is a 2^16 byte window into physical memory
o virtual to physical translation: pa = va + seg*16

o the segment is usually implicit, from a segment register
o CS - code segment (for fetches via IP)
o SS - stack segment (for load/store via SP and BP)
o DS - data segment (for load/store via other registers)
o ES - another data segment (destination for string operations)
o tricky: can't use the 16-bit address of a stack variable as a pointer
o but a far pointer includes full segment:offset (16 + 16 bits)

• But 8086's 16-bit addresses and data were still painfully small
o 80386 added support for 32-bit data and addresses (1985)
o boots in 16-bit mode, boot.S switches to 32-bit mode
o registers are 32 bits wide, called EAX rather than AX
o operands and addresses are also 32 bits, e.g. ADD does 32-bit arithmetic
o prefix 0x66 gets you 16-bit mode: MOVW is really 0x66 MOVW
o the .code32 in boot.S tells assembler to generate 0x66 for e.g. MOVW
o 80386 also changed segments and added paged memory...

x86 Physical Memory Map
• The physical address space mostly looks like ordinary RAM
• Except some low-memory addresses actually refer to other things
• Writes to VGA memory appear on the screen
• Reset or power-on jumps to ROM at 0x000ffff0

+------------------+ <- 0xFFFFFFFF (4GB)
| 32-bit |
| memory mapped |
| devices |
| |
/\/\/\/\/\/\/\/\/\/\

/\/\/\/\/\/\/\/\/\/\
| |
| Unused |
| |
+------------------+ <- depends on amount of RAM
| |
| |
| Extended Memory |
| |
| |
+------------------+ <- 0x00100000 (1MB)
| BIOS ROM |
+------------------+ <- 0x000F0000 (960KB)
| 16-bit devices, |
| expansion ROMs |
+------------------+ <- 0x000C0000 (768KB)
| VGA Display |
+------------------+ <- 0x000A0000 (640KB)
| |
| Low Memory |
| |

+------------------+ <- 0x00000000

x86 Instruction Set
• Two-operand instruction set

o Intel syntax: op dst, src
o AT&T (gcc/gas) syntax: op src, dst

 uses b, w, l suffix on instructions to specify size of operands
o Operands are registers, constant, memory via register, memory via

constant
o Examples:

AT&T syntax "C"-ish equivalent
movl %eax, %edx edx = eax; register mode
movl $0x123, %edx edx = 0x123; immediate
movl 0x123, %edx edx = *(int32_t*)0x123; direct
movl (%ebx), %edx edx = *(int32_t*)ebx; indirect
movl 4(%ebx), %edx edx = *(int32_t*)(ebx+4); displaced

• Instruction classes
o data movement: MOV, PUSH, POP, ...
o arithmetic: TEST, SHL, ADD, AND, ...
o i/o: IN, OUT, ...
o control: JMP, JZ, JNZ, CALL, RET
o string: REP MOVSB, ...
o system: IRET, INT

• Intel architecture manual Volume 2 is the reference

gcc x86 calling conventions
• x86 dictates that stack grows down:

Example instruction What it does

pushl %eax subl $4, %esp
movl %eax, (%esp)

popl %eax movl (%esp), %eax
addl $4, %esp

call $0x12345 pushl %eip (*)
movl $0x12345, %eip (*)

ret popl %eip (*)

• (*) Not real instructions
• GCC dictates how the stack is used. Contract between caller and callee on x86:

o after call instruction:
 %eip points at first instruction of function
 %esp+4 points at first argument
 %esp points at return address

o after ret instruction:
 %eip contains return address
 %esp points at arguments pushed by caller
 called function may have trashed arguments
 %eax contains return value (or trash if function is void)
 %ecx, %edx may be trashed
 %ebp, %ebx, %esi, %edi must contain contents from time of call

o Terminology:
 %eax, %ecx, %edx are "caller save" registers
 %ebp, %ebx, %esi, %edi are "callee save" registers

• Functions can do anything that doesn't violate contract. By convention, GCC does
more:

o each function has a stack frame marked by %ebp, %esp
o +------------+ |
o | arg 2 | \
o +------------+ >- previous

function's stack frame
o | arg 1 | /
o +------------+ |
o | ret %eip | /
o +============+
o | saved %ebp | \
o %ebp-> +------------+ |
o | | |
o | local | \
o | variables, | >- current

function's stack frame
o | etc. | /
o | | |
o | | |
o %esp-> +------------+ /

o %esp can move to make stack frame bigger, smaller
o %ebp points at saved %ebp from previous function, chain to walk stack
o function prologue:
o pushl %ebp
o movl %esp, %ebp

o function epilogue:
o movl %ebp, %esp
o popl %ebp

or

 leave

• Big example:
o C code
o int main(void) { return f(8)+1; }
o int f(int x) { return g(x); }
o int g(int x) { return x+3; }

o assembler
o _main:
o prologue
o pushl %ebp
o movl %esp, %ebp
o body
o pushl $8
o call _f
o addl $1, %eax
o epilogue
o movl %ebp, %esp
o popl %ebp
o ret
o _f:
o prologue
o pushl %ebp
o movl %esp, %ebp
o body
o pushl 8(%esp)
o call _g
o epilogue
o movl %ebp, %esp
o popl %ebp
o ret
o
o _g:
o prologue
o pushl %ebp
o movl %esp, %ebp
o save %ebx
o pushl %ebx
o body
o movl 8(%ebp), %ebx
o addl $3, %ebx
o movl %ebx, %eax
o restore %ebx
o popl %ebx
o epilogue
o movl %ebp, %esp
o popl %ebp
o ret

• Super-small _g:
• _g:
• movl 4(%esp), %eax
• addl $3, %eax
• ret

• Compiling, linking, loading:
o Compiler takes C source code (ASCII text), produces assembly language

(also ASCII text)
o Assembler takes assembly language (ASCII text), produces .o file (binary,

machine-readable!)
o Linker takse multiple '.o's, produces a single program image (binary)
o Loader loads the program image into memory at run-time and starts it

executing

PC emulation
• Emulator like Bochs works by

o doing exactly what a real PC would do,
o only implemented in software rather than hardware!

• Runs as a normal process in a "host" operating system (e.g., Linux)
• Uses normal process storage to hold emulated hardware state: e.g.,

o Hold emulated CPU registers in global variables
o int32_t regs[8];
o #define REG_EAX 1;
o #define REG_EBX 2;
o #define REG_ECX 3;
o ...
o int32_t eip;
o int16_t segregs[4];
o ...

o malloc a big chunk of (virtual) process memory to hold emulated PC's
(physical) memory

• Execute instructions by simulating them in a loop:
• for (;;) {
• read_instruction();
• switch (decode_instruction_opcode()) {
• case OPCODE_ADD:
• int src = decode_src_reg();
• int dst = decode_dst_reg();
• regs[dst] = regs[dst] + regs[src];
• break;
• case OPCODE_SUB:
• int src = decode_src_reg();
• int dst = decode_dst_reg();

• regs[dst] = regs[dst] - regs[src];
• break;
• ...
• }
• eip += instruction_length;
• }

• Simulate PC's physical memory map by decoding emulated "physical" addresses
just like a PC would:

• #define KB 1024
• #define MB 1024*1024
•
• #define LOW_MEMORY 640*KB
• #define EXT_MEMORY 10*MB
•
• uint8_t low_mem[LOW_MEMORY];
• uint8_t ext_mem[EXT_MEMORY];
• uint8_t bios_rom[64*KB];
•
• uint8_t read_byte(uint32_t phys_addr) {
• if (phys_addr < LOW_MEMORY)
• return low_mem[phys_addr];
• else if (phys_addr >= 960*KB && phys_addr < 1*MB)
• return rom_bios[phys_addr - 960*KB];
• else if (phys_addr >= 1*MB && phys_addr <

1*MB+EXT_MEMORY) {
• return ext_mem[phys_addr-1*MB];
• else ...
• }
•
• void write_byte(uint32_t phys_addr, uint8_t val) {
• if (phys_addr < LOW_MEMORY)
• low_mem[phys_addr] = val;
• else if (phys_addr >= 960*KB && phys_addr < 1*MB)
• ; /* ignore attempted write to ROM! */
• else if (phys_addr >= 1*MB && phys_addr <

1*MB+EXT_MEMORY) {
• ext_mem[phys_addr-1*MB] = val;
• else ...
• }

• Simulate I/O devices, etc., by detecting accesses to "special" memory and I/O
space and emulating the correct behavior: e.g.,

o Reads/writes to emulated hard disk transformed into reads/writes of a file
on the host system

o Writes to emulated VGA display hardware transformed into drawing into
an X window

o Reads from emulated PC keyboard transformed into reads from X input
event queue

	6.828 Lecture Notes: x86 and PC architecture
	Outline
	PC architecture
	x86 Physical Memory Map
	x86 Instruction Set
	gcc x86 calling conventions
	PC emulation

