Latvijas Universitāte Datorikas fakultāte

FPGA

Kurss "Ievads digitālajā projektēšanā"

Lekcija 17.12.2010

Autors: Artis Mednis

Rīga 2010

What is FPGA?

- **Field-Programmable Gate Array**
- Semiconductor device
- Can be configured by the customer or designer after manufacturing
- To program an FPGA you specify how you want the chip to work:
 - logic circuit diagram
 - source code in a hardware description language (HDL)

Primary using of FPGA's

- To implement any logical function
- But... similar tasks could be solved using Application-Specific Integrated Circuit (ASIC). Why we need FPGA?
- Advantage of FPGA:
 - ability to update the functionality after shipping

Inside FPGA

- Programmable logic components called "logic blocks"
- Hierarchy of reconfigurable interconnects that allow the blocks to be "wired together"
- Logic blocks can be:
 - configured to perform complex combinational functions
 - simple logic gates like AND and XOR
 - memory elements:
 - simple flip-flops
 - complete blocks of memory

FPGA – pro & contra

Advantages:

- shorter time to market
- ability to re-program in the field to fix bugs
- lower non-recurring (one-time) engineering costs
- Disadvantages:
 - usually slower than their fixed ASIC counterparts
 - draw more power
 - achieve less functionality using a given amount of circuit complexity

5

Optimal solution?

First developing hardware on ordinary FPGA's...

 ... then manufacture final version so it can no longer be modified after the design has been committed ⁽ⁱ⁾

Discussion – is it OK or not?

A little bit of history

- Roots of FPGAs Complex Programmable
 Logic Devices (CPLD's) 1980s
- First FPGA 1984 Ross Freeman, Xilinx co-founder
- Scalability:
 - CPLD from several thousand to tens of thousands of logic gates
 - FPGA from tens of thousands to several million of logic gates

Differences between CPLD & FPGA

CPLD:

- restrictive structure:
 - one or more programmable logic arrays
 - relatively small number of clocked registers
- less flexibility
- more predictable timing delays
- higher logic-to-interconnect ratio
- FPGA:
 - dominated by interconnect
 - more flexible
 - more complex to design

More about differences

FPGA:

- higher-level embedded functions:
 - adders
 - multipliers
- embedded memories
- logic blocks implement decoders
- logic blocks implement mathematical functions
- partial re-configuration (one portion of the device is re-programmed while other portions continue running)

Modern development

- Coarse-grained architectural approach:
 - logic blocks and interconnects of traditional FPGA's
 - embedded microprocessors and related peripherals
 - complete "system on a programmable chip"
- Alternate approach:
 - "soft" processor cores that are implemented within the FPGA logic

More about modern development

- Ability to be reprogrammed at "run time":
 - idea of reconfigurable computing or reconfigurable systems
 - CPU's that reconfigure themselves to suit the task at hand
- Software-configurable microprocessors:
 - hybrid approach
 - array of processor cores
 - FPGA-like programmable cores
 - all this on the same chip

- Hard (embedded) CPU core will outperform a soft-core CPU
- Xilinx:
 - MicroBlaze 32 bit RISC architecture
 - PicoBlaze 8 bit RISC architecture

Applications of FPGA's

- Digital signal processing
- ASIC prototyping
- Computer vision
- Cryptography
- Computer hardware emulation
- ••••
- Best suited for parallel computing
- High performance computing limited by the extremely long turn-around times of current design tools (4-8 hours for even minor changes of source code)

Architecture I

- Typical:
 - array of configurable logic blocks (CLB's)
 - routing channels
 - multiple I/O pads may fit into the height of one row or the width of one column in the array
 - all the routing channels have the same width (number of wires)
- Logic block:

4-input lookup table (LUT) (now 6)

Architecture II

- Clock signals are routed via special-purpose routing networks
- Each input is accessible from one side of the logic block
- Output pin can connect to routing wires in both the channel to the right and the channel below the logic block
- Each logic block output pin can connect to any of the wiring segments in the channels adjacent to it

Architecture III

- Each wiring segment spans only one logic block before it terminates in a switch box
- When a wire enters a switch box, there are three programmable switches that allow it to connect to three other wires in adjacent channel segments
- The topology of switches is planar or domain-based

Design & programming I

- Hardware description language (HDL):
 - most common VHDL & Verilog
 - easier to work with when handling large structures
- Schematic design:
 - easier visualisation of a design

Discussion – what is your favorite design approach?

Design & programming II

Process:

- generation of netlist
- place-and-route
- timing analysis
- simulation
- generation of binary file
- transfer:
 - direct to FPGA (via JTAG)
 - to external memory device (EEPROM)

Design & programming III

- Simplifying of design:
 - libraries of predefined complex functions
 - circuits that have been tested and optimized:
 - IP Cores
 - OpenCores
- Multiple simulations:
 - creating test benches to simulate the system and observe results
 - repeated to confirm the synthesis proceeded without errors
 - propagation delays can be added and the simulation run again

Manufacturers

- Leaders:
 - AlteraXilinx

Others:

- Lattice Semiconductor
- Actel
- Atmel
- QuickLogic

XC3S500E (Spartan 3E) I

Architecture:

- Configurable Logic Blocks (CLBs)
- Input/Output Blocks (IOBs)
- Block RAM
- Multiplier Blocks

 Digital Clock Manager (DCM) Blocks

OBs

XC3S500E (Spartan 3E) II

Device	CLB Rows	CLB Columns	CLB Total ⁽¹⁾	Slices	LUTs / Flip-Flops	Equivalent Logic Cells	RAM16/ SRL16	Distributed RAM Bits
XC3S500E	46	34	1,164	4,656	9,312	10,476	4,656	74,496

FPGA

XC3S500E (Spartan 3E) III

FPGA

LUT6 MUX

FPGA

Praktiskie darbi

Strādājam pie kursa projekta KP3

