Wireless Sensor Network
Programming Using TinyOS

A Tutorial

Wenjie Zeng

Oct 2011

Typical WSN Architecture

sensor code base station code gateway code
(nesC/Tiny0S) (nesC/TinyOS) (Java, C, ...)
=

patch of sensors data sink gateway Internet

Figure 1.1 A typical sensor network architecture. Patches of ultra-low power sensors. running
nesC/TinyOS. communicate to gateway nodes through data sinks. These gateways
connect to the larger Internet.

TinyOS Architecture 33

Main (scheduler)

Compilation

DN nce —\t gcc
o TTE
Nc - app.c - binar}r
. I
nesC Native C
compiler compiler

Figure 2.2 The nesC compilation model. The nesC compiler loads and reads in nesC components, which it
compiles to a C file. This C file is passed to a native C compiler, which generates a mote binary.

Outline

e Components and interfaces
Basic example

e Tasks and concurrency
e TINyOS communications
e Compilation and toolchain

Outline

e Components and interfaces
e Basic example

e Tasks and concurrency
e TINyOS communications
e Compilation and toolchain

Components and Interfaces

e Basic unit of nesC code is component

e Components connect via interfaces
e Connections called “wiring”

Components

e A componentis a file that ends with .nc
e Names must match

e Modules are components with variables and executable
codes

e Configurations are components that wire other
components together

000
0000
o000
o000
| X J
Components :
module PowerupC {
uses interface Boot; PowerupC
uses interface Leds;
}
implementation { Boot Leds
event wvoid Boot.booted () {
call Leds.1led00On () ;
} MainC LedsC
}

configuration PoweruplZAppC { }
implementation ({

components MainC, LedsC, PowerupC;

MainC.Boot -> PowerupC.Boot; Wiring: Pick implementations

PowerupC.Leds -> LedsC.Leds; for used interfaces

Listing 2.4 PowerupAppC configuration in nesC

Interfaces

e Collections of related functions
e Define interactions between components

e Interfaces are bidirectional

Commands
Implemented by provider [= }

Called by user
Commands N
Interface T
y

Events
Wy

Called (signaled) by provider
Implemented (captured) by user Provider

e Can have parameters (types)

Events

Who is the provider for the sese
Boot interface? o
j.mplementation { User PowerupC

event wvoid Boot.booted () {

call Leds.led00On () :

configuration PoweruplZAppC { }
implementation ({

components MainC, LedsC, PowerupC;

MainC.Boot -> PowerupC.Boot;

PowerupC.Leds -> LedsC.Leds;

Boot booted

Provider MainC

Listing 2.4 PowerupAppC configuration in nesC

Interfaces

e Can have parameters (types)

interface
command
command
command
command
command
command

command

Queue<t> {

bool empty () ;

uint8 _t size () ;

uint8_t maxsize () ;

t head () ;

t dequeue () ;

error_t engueue (t newVal) ;

t element(uint8_t idx) ;

module QueueUserC {

uses interface Queue<uint32_t>;

module Queuei2ZC {
provides interface Queue<ulnt32 t>:
}

Outline

e Components and interfaces
e Basic example

e Tasks and concurrency
e TINyOS communications
e Compilation and toolchain

Basic example

e Goal: an anti-theft program that protects your bike!

e Two parts
Detecting theft
Assume: thieves will ride the stolen bike
A covered (dark) seat -> a stolen bike
Mote embedded in seat senses light every 500 ms

Reporting theft
Beep the pants out of the thief
e What we will use
Components, interfaces, and wiring configurations

Essential system interfaces for startup, timing, and sensor
sampling

The Anti-Theft module

Anti Theft C {

i nterface Boot;
interface Tinmer<Tm | |li> as CheckTi mer;
I nterface Read<uint16 t >;
I nterface Beep;

nodul e

}

uses
uses
uses
uses

i npl enent ati on {

}

event void Boot. booted() {

call CheckTi ner. startPeriodi c(500);

}

event void CheckTiner.fired() {

cal l

}

event void Read.readDone(error_t e,
< 200) {

i f

}
}

(e
cal l

Read. read();

== SUCCESS && val
Beep. beep();

uintle t val) {

The Anti-Theft module: selce

split-phase operations oo

nodul e Anti Theft C {
uses interface Boot;
uses interface Tiner<Tm !l li> as CheckTi mer;
uses interface Read<uintl6_t>;
uses interface Beep;
}
i npl enent ati on {
event void Boot. booted() {
call CheckTi ner. startPeriodi c(500);
}

event void CheckTiner.fired() {
call Read.read();
}

event void Read.readDone(error_t e, uintl6_t val) {
I f (e == SUCCESS && val < 200) {
cal |l Beep. beep();
}

}
}

The Anti-Theft module:
split-phase operations

nodul e

}

uses
uses
uses
uses

Anti Theft C {

i nterface Boot;

interface Tinmer<Tm | |li> as CheckTi mer;
I nterface Read<uint16 t >;

I nterface Beep;

i npl enent ati on {
event void Boot. booted() {
call CheckTi ner. startPeriodi c(500);

}

}

event void CheckTiner.fired() {
call Read.read();

}

even
i f

}
}

t void Read.readDone(error_t e, uintl6 t val) {
(e ==SUCCESS && val < 200) {
cal |l Beep. beep();

The Anti-Theft configurations

configuration Anti TheftAppC {}
| npl enent ati on {
conponents Anti TheftC, M nC, BeepC,

Anti Theft C. Boot -> Mi nC
Ant i Theft C. Beep -> BeepC,

components new TinerMI1lic() as TheTi ner;
Anti Thef t C. CheckTi ner -> TheTi ner;

conponents new Phot oC() as Phot oSensor;
Ant i Theft C. Read -> Phot oSensor;

A configuration is a component built with other components

- It wires the user of interfaces to providers
- It can instantiate generic components
- It can itself provide and use interfaces

The Anti-Theft configurations

configuration Anti TheftAppC {}

| npl enent ati on {

conponents Anti Theft C, Na generic configuration TimerMilliC() {
provides interface Timer<Tmilli>;

Anti Theft C. Boot -> Mai nC |}

. ' V2N P22 VN o0 TPV~ S N |
Anti Theft C. Beep -> BeepG, generic configuration PhotoC() {

provides interface Read<uintl6_t>;

conponents new TinmerM I | i }
Ant i Theft C. CheckTi ner ->

implementation {...}

conponents new Phot oC() as Phot oSensor;
Anti Theft C. Read -> Phot oSensor;

A configuration is a component built with other components

- It wires the user of interfaces to providers
- It can instantiate generic components
- It can itself provide and use interfaces

Quick review

e TinyOS application is composed of components
Modules contains actual code
Configurations wire components together

e Components “wire” with one other through interfaces that
can be parameterized

e Interfaces contain commands and events

e Provider of an interface implements the command body
e User of an interface implements the event body

e Long task are split-phase: read -> readDone

Outline

e Components and interfaces
e Basic example

e Tasks and concurrency
e TInyOS communications
e Compilation and toolchain

Tasks

e TinyOS has one single thread, shared stack, no heap

code executes within commands, events (including interrupt
handlers) and tasks

e Tasks: mechanism to defer computation
Tells TinyOS to “do this later”

e Tasks run to completion
TinyOS scheduler runs tasks in the order they are posted
Keep them short

e Interrupts can pre-empt tasks

The interrupt handler (function) will be invoked immediately after the interrupt
Race conditions
Interrupt handlers can post tasks

Commands, Events and Tasks

e tasks can call commands and
High-level component signal events

A

e commands/events can post
tasks or call other commands

e events are synchronous by
default (no pre-emption)

command event

A

Low-level component

command eventT e tasks pre-empted by
Y asynchronous events but not
H/w drivers, etc Task 1 other tasks
T Task 0

l I task void TaskO {

(':le'lll Somelnterface.someCmd();

set registers, etc. h/w interrupts
}

configuration SomeComponent {
provides interface Somelnterface;
}

implementation {...}

Task Sch

eduler

e Tasks result in Split-Phase execution

call Interface.doSomething();

<

.................. return SUCCESS: ...

task void doSomething() {

signal Interface.done();

--

—» post doSomething();

Outline

e Components and interfaces
e Basic example

e Tasks and concurrency
e TINnyOS communications
e Compilation and toolchain

Radio Stacks

Your Application

SplitControl

AMSend]

y

Mess

age Queue

A

A
Receive

ActiveMessage

Main Radio Interfaces

e SplitControl
Provided by ActiveMessageC

e AMSend
Provided by AMSenderC

e Receive
Provided by AMReceiverC

Main Serial Interfaces

e SplitControl
Provided by SerialActiveMessageC

e AMSend
Provided by SerialAMSenderC

e Receive
Provided by SerialAMReceiverC

Setting up the Radio:
Configuration

configuration M/AppC {
}

| npl ementation {
conponents MyAppP,
Mai nC,
ActiveMessageC
new AMSenderC(0), // send an AM type O message
new AMReceiverC(0); // receive an AM type 0 messag

MyAppP. Boot -> Mai nC,

My AppP. SplitControl -> Acti veMessageC,
MyAppP. AMSend - > AMSender C,

MyAppP. Receiver -> AMRecei ver C,

Setting up the Radio: Module

module MyAppP {
uses {
Interface Boot;
Interface SplitControl;
Interface AMSend,;
Interface Receive;

}
}

Implementation {

}

Turn on the Radio

event void Boot.booted() {
call SplitControl.start();

}

event void SplitControl.startDone(error_t error) {
post sendMsg();

}

event void SplitControl.stopDone(error_t error) {

}

Send Messages

message_t myMsg;

task void sendMsg() {
if(call AMsend. send(AM BROADCAST ADDR,
&yMsg, 0) !'=SUCCESS)/{
post sendMsg();
}
}

event void AMSend.sendDone(message t *msg,
error_t error) {
post sendMsg();

Recelve a Message

event message t *Receive.receive(message t *msg, void
*payload, uint8 t length) {
call Leds.ledOToggle();
return msg;

Payloads

e A message consists of:
e Header
o Payload
e Optional Footer

message_t

typedef nx_struct message t {
nx_uint8_t header[sizeof(message header t)];
nx_uint8_t data[TOSH_DATA LENGTH];
nx_uint8_t footer[sizeof(message_footer _t)];

nx_uint8_t metadata[sizeof(message metadata_t)];
} message t;

Payloads : Use Network Types

(MyPayl oad. h)

#ifndef MYPAYLOAD_H
#define MYPAYLOAD_H

typedef nx_struct MyPayload {
nx_uint8 _t count;
} MyPayload;

enum {
AM_MYPAYLOAD = 0x50,

%

#endif

000
0000
0000
. 1T
Example: Filling out a Payload |
void createMsg() {
MyPayload *payload = (MyPayload *) cal |l AMsend. get Payl oad(&ryMsg) ;

payload->count = (myCount++);
post sendMsg();

}

Example: Receiving a Payload

event void Receive.receive(message_t *msg, void *payload, uint8_t len)
{
MyPayload *payload = (MyPayload *) payl oad;
call Leds.set(payload->count);
signal RemoteCount.receivedCount(payload->count);

return msg;

Radio layer tips

How to set the channel using Makefile

PFLAGS =-DCC2420_DEF_CHANNEL=12
DEFINED_TOS_AM_GROUP: the motes group id (default is 0x22).
TOSH_DATA_LENGTH: radio packet payload length (default 28).

PFLAGS +="-DCC2420_DEF_RFPOWER=7*: sets the transmit power of the radio (0-31)

How to change channel using the code

CC2420Control

How do you get the signal strength of a received packet

CC2420Packet.getLgi(msg);

Common Gotchas

e TinyOS radio messages are default to 28 bytes

e Always use nx_ prefixed types (network types) in data
structures to be sent

e Always check whether a command / event / task post is
successful

Return value of a command
Argument of event carrying status
Return value of ‘post taskName()’

Timer Interface

e Timer
used to schedule periodic events like sensing
one-shot or repeat modes
uses interface Tiner<TMI1li> as TinerO;

call TinmerO.startPeriodic(250);
call TinmerO.startOneShot(250);

CC2420

e Supports hardware encryption using AES

e Implementation
Load 128-bit key to the CC2420 RAM and set a flag
The key is built with the binary or transfered using serial port

Loading the security RAM buffers on the CC2420 with the information to be
encrypted (payload without header)

Microcontroller reads out of the security RAM buffer and concatenates the data
with the unencrypted packet header.

This full packet would be uploaded again to the CC2420 TXFIFO buffer and
transmitted.

e Source code and documentation

e Hardware attack on TelosB mote to extract the AES Key

Takes advantage of the fact that the Key is loaded into the CC2420 chip, using a
well know pin

Testing WSN Programs

e |IDE: Eclipse + Yeti2 plug-in

e TOSSIM

e using actual hardware
e LEDs — 3 of them so you can debug 8 states ©
o Printf library

e Testbeds
e Kansel

e Peoplenet
o GENI

Installation

Installing TinyOS 2.x

Read the installation tutorials on

- VMPlayer (XubunTOS)
Download VMPlayer

Download XubunTos image

Checking installation

$ cd $STOSROOT
$ cd apps/Blink
$ make telosb

$ cd build/telosb

$ls
main.exe main.ihex tos_image.xml

$ export

$SMAKERULES, $TOSROOT, $TOSDIR

000
000
o0
[
Installing to a real mote
Connect your mote to the PC/Laptop
$ cd apps/Blink
Find out which port the mote is connected to
$ motelist
Themoteidyouset TheUSB port the mote attached to
Compile and install: / /] | want to install the program specified in the

$ make telosb install, 10 bsl,/dev/ttyUSBO Makefilein the current directory into the
telosb mote attached to /dev/tty/USBO0 and

set theid for this mote to 10

Install an application you've previously compiled:
$ make telosb reinstall,10 bsl,/dev/ttyUSBO

Getting help for a platform:
$ make telosb help

TOSSIM: TinyOS Simulator

e Provided as part of TinyOS package

e dbg statements to observe program state
e Easy to use for simple applications

e More detailed tutorial at

Debug Statements in TOSSIM

event void Boot.booted() {
call Leds.led0OnN();

dbg("Boot,RadioCountToLedsC", "Application
booted.\n");

call AMControl.start();

dbg("RadioCountToLedsC", "LQI: %d\n", rcvPkt->Iqi);

Compiling TOSSIM

e Compiling for TOSSIM
$ cd $TOSROOT
$ cd apps/Blink
$ make micaz sim

e Running simulations
python blinkSim.py

Sample Exercise-1

LinkQuality Measurement simulation

e Use TOSSIM to inject radio channel model and simulate the following
application on 5 nodes

e Application specifications

Eac%node sends a periodic (once every 15 sec) broadcast Msg, with a sequence
number.

Whenever it receives a message on radio, print the following using debug
statements

Rcr_node, Src_node, Seq_no, Rssi, Lqi

Turn On Blue LED when you send the message and turn it off after you get the
sendDone

Toggle Green LED whenever you receive a msg

You will need components
AMSenderC
AMReceiverC
CC2420Packet
Timer
Leds

Sample Exercise-2

LinkQuality Measurement on modes

e Program the application on real modes and collect the log files using
the SerialForwarder application

e Application Specification

Eac%node sends a periodic (once every 15 sec) broadcast Msg, with a sequence
number.

Whenever it receives a message on radio, write to UART
Rcr_node, Src_node, Seq_no, Rssi, Lqi

Turn On Blue LED when you send the message and turn it off after you get the
sendDone

Toggle Green LED whenever you receive a msg

You will need components
AMSenderC
AMReceiverC
SerialAMSenderC
CC2420Packet
Timer
Leds

References

e TO learn more

e Hardware vendors
e Crossbow.com
e Motelv.com
Centila.com
Sunspots
Imote?2

Acknowledgment

e TINyOS 2 tutorials at

e David Moss. Rincon Research Corp
Some of the slides in this tutorial are taken from

Thank You!

e Questions ?

e Contact information

e Jing Li— DL 281 (jingl@cse)

o Wenjie Zeng — DL 283

