
Wireless Sensor Network
Programming Using TinyOS

A Tutorial

Wenjie Zeng

Oct 2011

Typical WSN Architecture

TinyOS Architecture

Main (scheduler)

Sensing Comms Other Libraries

Application

Hardware Abstractions (ADC, CLOCK, I2C, LEDS, PHOTO, UART, SPI)

Compilation

ncc gcc

Outline

� Components and interfaces
� Basic example

� Tasks and concurrency
� TinyOS communications� TinyOS communications
� Compilation and toolchain

Outline

� Components and interfaces
� Basic example

� Tasks and concurrency
� TinyOS communications� TinyOS communications
� Compilation and toolchain

Components and Interfaces

� Basic unit of nesC code is component
� Components connect via interfaces
� Connections called “wiring”

A Bi

Components

� A component is a file that ends with .nc
� Names must match

� Modules are components with variables and executable
codescodes

� Configurations are components that wire other
components together

Components

Wiring: Pick implementations

for used interfaces

Interfaces

� Collections of related functions
� Define interactions between components
� Interfaces are bidirectional
� CommandsCommands
� Implemented by provider
� Called by user

� Events
� Called (signaled) by provider
� Implemented (captured) by user

� Can have parameters (types)

Who is the provider for the
Boot interface?

PowerupC

MainC

Interfaces

� Can have parameters (types)

Outline

� Components and interfaces
� Basic example

� Tasks and concurrency
� TinyOS communications� TinyOS communications
� Compilation and toolchain

Basic example
� Goal: an anti-theft program that protects your bike!

� Two parts
� Detecting theft
� Assume: thieves will ride the stolen bike
� A covered (dark) seat -> a stolen bikeA covered (dark) seat -> a stolen bike
� Mote embedded in seat senses light every 500 ms

� Reporting theft
� Beep the pants out of the thief

� What we will use
� Components, interfaces, and wiring configurations
� Essential system interfaces for startup, timing, and sensor

sampling

The Anti-Theft module
module AntiTheftC {
uses interface Boot;
uses interface Timer<Tmilli> as CheckTimer;
uses interface Read<uint16_t>;
uses interface Beep;

}
implementation {
event void Boot.booted() {
call CheckTimer.startPeriodic(500);call CheckTimer.startPeriodic(500);

}
event void CheckTimer.fired() {
call Read.read();

}
event void Read.readDone(error_t e, uint16_t val) {
if (e == SUCCESS && val < 200) {
call Beep.beep();

}
}

} interface Read<t> {
command error_t read();
event void readDone(error_t e, t val);

}

The Anti-Theft module:
split-phase operations
module AntiTheftC {
uses interface Boot;
uses interface Timer<Tmilli> as CheckTimer;
uses interface Read<uint16_t>;
uses interface Beep;

}
implementation {
event void Boot.booted() {
call CheckTimer.startPeriodic(500);call CheckTimer.startPeriodic(500);

}
event void CheckTimer.fired() {

call Read.read();
}
event void Read.readDone(error_t e, uint16_t val) {
if (e == SUCCESS && val < 200) {
call Beep.beep();

}
}

}
In TinyOS, all long-running operations are split-phase:
- A command starts the operatin: read

- Only one outstanding request allowed
- An event signals the completion of the operation: readDone

The Anti-Theft module:
split-phase operations
module AntiTheftC {
uses interface Boot;
uses interface Timer<Tmilli> as CheckTimer;
uses interface Read<uint16_t>;
uses interface Beep;

}
implementation {
event void Boot.booted() {
call CheckTimer.startPeriodic(500);call CheckTimer.startPeriodic(500);

}
event void CheckTimer.fired() {
call Read.read();

}
event void Read.readDone(error_t e, uint16_t val) {
if (e == SUCCESS && val < 200) {
call Beep.beep();

}
}

}
In TinyOS, all long-running operations are split-phase:
- A command starts the operation: read

- Only one outstanding request allowed
- An event signals the completion of the operation: readDone

-Errors are signalled by error_t variable

The Anti-Theft configurations
configuration AntiTheftAppC {}
implementation {
components AntiTheftC, MainC, BeepC;

AntiTheftC.Boot -> MainC;
AntiTheftC.Beep -> BeepC;

components new TimerMillic() as TheTimer;
AntiTheftC.CheckTimer -> TheTimer;AntiTheftC.CheckTimer -> TheTimer;

components new PhotoC() as PhotoSensor;
AntiTheftC.Read -> PhotoSensor;

}

A configuration is a component built with other components

- It wires the user of interfaces to providers
- It can instantiate generic components
- It can itself provide and use interfaces

The Anti-Theft configurations
configuration AntiTheftAppC {}
implementation {
components AntiTheftC, MainC, BeepC;

AntiTheftC.Boot -> MainC;
AntiTheftC.Beep -> BeepC;

components new TimerMillic() as TheTimer;
AntiTheftC.CheckTimer -> TheTimer;

generic configuration TimerMilliC() {
provides interface Timer<Tmilli>;

}
implementation {...}
generic configuration PhotoC() {

provides interface Read<uint16_t>;
}
implementation {...}

AntiTheftC.CheckTimer -> TheTimer;

components new PhotoC() as PhotoSensor;
AntiTheftC.Read -> PhotoSensor;

}

implementation {...}

A configuration is a component built with other components

- It wires the user of interfaces to providers
- It can instantiate generic components
- It can itself provide and use interfaces

Quick review

� TinyOS application is composed of components
� Modules contains actual code
� Configurations wire components together

� Components “wire” with one other through interfaces that
can be parameterizedcan be parameterized

� Interfaces contain commands and events
� Provider of an interface implements the command body
� User of an interface implements the event body
� Long task are split-phase: read -> readDone

Outline

� Components and interfaces
� Basic example

� Tasks and concurrency
� TinyOS communications� TinyOS communications
� Compilation and toolchain

Tasks

� TinyOS has one single thread, shared stack, no heap
� code executes within commands, events (including interrupt

handlers) and tasks

� Tasks: mechanism to defer computation
� Tells TinyOS to “do this later”� Tells TinyOS to “do this later”

� Tasks run to completion
� TinyOS scheduler runs tasks in the order they are posted
� Keep them short

� Interrupts can pre-empt tasks
� The interrupt handler (function) will be invoked immediately after the interrupt

� Race conditions

� Interrupt handlers can post tasks

Commands, Events and Tasks
� tasks can call commands and

signal events

� commands/events can post
tasks or call other commands

� events are synchronous by
default (no pre-emption)

High-level component

Low-level component

command event

default (no pre-emption)

� tasks pre-empted by
asynchronous events but not
other tasksH/w drivers, etc

command event

Task 0
Task 1

set registers, etc. h/w interrupts

configuration SomeComponent {
provides interface SomeInterface;

}
implementation {…}

task void Task0 {
…
call SomeInterface.someCmd();
…

}

Task Scheduler

� Tasks result in Split-Phase execution

ComponentA ComponentBComponentA ComponentB

call Interface.doSomething();

return SUCCESS;

task void doSomething() {
...
signal Interface.done();

}

post doSomething();

Outline

� Components and interfaces
� Basic example

� Tasks and concurrency
� TinyOS communications� TinyOS communications
� Compilation and toolchain

Radio Stacks

Your Application

ReceiveSplitControlAMSend

Radio Hardware

Transmit / Receive / Init

CSMA / Acknowledgements

ActiveMessage

Message Queue

Main Radio Interfaces

� SplitControl

� Provided by ActiveMessageC

� AMSend� AMSend

� Provided by AMSenderC

� Receive

� Provided by AMReceiverC

Main Serial Interfaces

� SplitControl

� Provided by SerialActiveMessageC

� AMSend� AMSend

� Provided by SerialAMSenderC

� Receive

� Provided by SerialAMReceiverC

Setting up the Radio:
Configuration
configuration MyAppC {

}

implementation {

components MyAppP,

MainC,MainC,

ActiveMessageC ,

new AMSenderC(0), // send an AM type 0 message

new AMReceiverC(0); // receive an AM type 0 messag e

MyAppP.Boot -> MainC;

MyAppP.SplitControl -> ActiveMessageC;

MyAppP.AMSend -> AMSenderC;

MyAppP.Receiver -> AMReceiverC;

}

Setting up the Radio: Module
module MyAppP {
uses {

interface Boot;
interface SplitControl;
interface AMSend;interface AMSend;
interface Receive;

}
}

implementation {
…

}

Turn on the Radio

event void Boot.booted() {
call SplitControl.start();

}

event void SplitControl.startDone(error_t error) {event void SplitControl.startDone(error_t error) {
post sendMsg();

}

event void SplitControl.stopDone(error_t error) {
}

Send Messages
message_t myMsg;

task void sendMsg() {

if(call AMSend.send(AM_BROADCAST_ADDR,

&myMsg, 0) != SUCCESS) {

post sendMsg();post sendMsg();

}

}

event void AMSend.sendDone(message_t *msg,

error_t error) {

post sendMsg();

}

Receive a Message
event message_t *Receive.receive(message_t *msg, void

*payload, uint8_t length) {

call Leds.led0Toggle();

return msg;

}}

Payloads

� A message consists of:
� Header
� Payload
� Optional Footer� Optional Footer

message_t

typedef nx_struct message_t {

nx_uint8_t header[sizeof(message_header_t)];

nx_uint8_t data[TOSH_DATA_LENGTH];

nx_uint8_t footer[sizeof(message_footer_t)];nx_uint8_t footer[sizeof(message_footer_t)];

nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t;

Payloads : Use Network Types
(MyPayload.h)

#ifndef MYPAYLOAD_H

#define MYPAYLOAD_H

typedef nx_struct MyPayload {

nx_uint8_t count;

} MyPayload;

enum {

AM_MYPAYLOAD = 0x50,

};

#endif

Example: Filling out a Payload
void createMsg() {

MyPayload *payload = (MyPayload *) call AMSend.getPayload(&myMsg);

payload->count = (myCount++);

post sendMsg();

}

Example: Receiving a Payload
event void Receive.receive(message_t *msg, void *payload, uint8_t len)

{

MyPayload *payload = (MyPayload *) payload;

call Leds.set(payload->count);

signal RemoteCount.receivedCount(payload->count);

return msg;

}

Radio layer tips

� How to set the channel using Makefile

� PFLAGS = -DCC2420_DEF_CHANNEL=12

� DEFINED_TOS_AM_GROUP: the motes group id (default is 0x22).

� TOSH_DATA_LENGTH: radio packet payload length (default 28).

� PFLAGS += "-DCC2420_DEF_RFPOWER=7“: sets the transmit power of the radio (0-31)

� How to change channel using the code

� CC2420Control

� How do you get the signal strength of a received packet

� CC2420Packet.getLqi(msg);

Common Gotchas

� TinyOS radio messages are default to 28 bytes

� Always use nx_ prefixed types (network types) in data
structures to be sent

� Always check whether a command / event / task post is
successful
� Return value of a command
� Argument of event carrying status
� Return value of ‘post taskName()’

Timer Interface

� Timer
� used to schedule periodic events like sensing
� one-shot or repeat modes

uses interface Timer<TMilli> as Timer0;uses interface Timer<TMilli> as Timer0;
call Timer0.startPeriodic(250);
call Timer0.startOneShot(250);

CC2420
� Supports hardware encryption using AES
� Implementation
� Load 128-bit key to the CC2420 RAM and set a flag
� The key is built with the binary or transfered using serial port

� Loading the security RAM buffers on the CC2420 with the information to be
encrypted (payload without header)

� Microcontroller reads out of the security RAM buffer and concatenates the data
with the unencrypted packet header.

� Microcontroller reads out of the security RAM buffer and concatenates the data
with the unencrypted packet header.

� This full packet would be uploaded again to the CC2420 TXFIFO buffer and
transmitted.

� Source code and documentation
� http://cis.sjtu.edu.cn/index.php/The_Standalone_AES_Encryption_of_CC2420_(Ti

nyOS_2.10_and_MICAz)

� Hardware attack on TelosB mote to extract the AES Key
� Takes advantage of the fact that the Key is loaded into the CC2420 chip, using a

well know pin
� http://travisgoodspeed.blogspot.com/2009/03/breaking-802154-aes128-by-syringe.html

Testing WSN Programs

� IDE: Eclipse + Yeti2 plug-in
� http://tos-ide.ethz.ch/wiki/pmwiki.php?n=Site.Setup

� TOSSIM

� using actual hardware� using actual hardware
� LEDs – 3 of them so you can debug 8 states ☺

� Printf library http://docs.tinyos.net/index.php/The_TinyOS_printf_Library

� Testbeds
� Kansei
� Peoplenet
� GENI

InstallationInstallation

Installing TinyOS 2.x

Read the installation tutorials on
http://docs.tinyos.net/index.php/Getting_started

• VMPlayer (XubunTOS)• VMPlayer (XubunTOS)
• Download VMPlayer

• http://downloads.vmware.com/d/info/desktop_end_user_computing/vmwa
re_player/4_0

• Download XubunTos image
• http://docs.tinyos.net/tinywiki/index.php/Running_a_XubunTOS_Virtual_Machine_I

mage_in_VMware_Player

Checking installation
$ cd $TOSROOT

$ cd apps/Blink
$ make telosb

$ cd build/telosb

$ ls$ ls
main.exe main.ihex tos_image.xml

$ export

$MAKERULES, $TOSROOT, $TOSDIR

Installing to a real mote
Connect your mote to the PC/Laptop

$ cd apps/Blink

Find out which port the mote is connected to
$ motelist$ motelist

Compile and install:
$ make telosb install,10 bsl,/dev/ttyUSB0

Install an application you’ve previously compiled:
$ make telosb reinstall,10 bsl,/dev/ttyUSB0

Getting help for a platform:
$ make telosb help

The mote id you set The USB port the mote attached to

I want to install the program specified in the
Makefile in the current directory into the
telosb mote attached to /dev/tty/USB0 and
set the id for this mote to 10

TOSSIM: TinyOS Simulator

� Provided as part of TinyOS package
� dbg statements to observe program state
� Easy to use for simple applications

More detailed tutorial at � More detailed tutorial at
http://docs.tinyos.net/index.php/TOSSIM

Debug Statements in TOSSIM
event void Boot.booted() {

call Leds.led0On();

dbg("Boot,RadioCountToLedsC", "Application
booted.\n");

call AMControl.start();

}

dbg("RadioCountToLedsC", "LQI: %d\n", rcvPkt->lqi);

Compiling TOSSIM

� Compiling for TOSSIM
� $ cd $TOSROOT
� $ cd apps/Blink
� $ make micaz sim� $ make micaz sim

� Running simulations
� python blinkSim.py
� http://www.cse.ohio-

state.edu/~sridhara/Siefast/WSN_tutorial/TOSSIM

Sample Exercise-1
LinkQuality Measurement simulation
� Use TOSSIM to inject radio channel model and simulate the following

application on 5 nodes
� Application specifications
� Each node sends a periodic (once every 15 sec) broadcast Msg, with a sequence

number.
� Whenever it receives a message on radio, print the following using debug

statements
� Whenever it receives a message on radio, print the following using debug

statements
� Rcr_node, Src_node, Seq_no, Rssi, Lqi

� Turn On Blue LED when you send the message and turn it off after you get the
sendDone

� Toggle Green LED whenever you receive a msg
� You will need components
� AMSenderC
� AMReceiverC
� CC2420Packet
� Timer
� Leds

Sample Exercise-2
LinkQuality Measurement on modes
� Program the application on real modes and collect the log files using

the SerialForwarder application
� Application Specification
� Each node sends a periodic (once every 15 sec) broadcast Msg, with a sequence

number.
� Whenever it receives a message on radio, write to UART� Whenever it receives a message on radio, write to UART
� Rcr_node, Src_node, Seq_no, Rssi, Lqi

� Turn On Blue LED when you send the message and turn it off after you get the
sendDone

� Toggle Green LED whenever you receive a msg
� You will need components
� AMSenderC
� AMReceiverC
� SerialAMSenderC
� CC2420Packet
� Timer
� Leds

References

� To learn more
� http://docs.tinyos.net

� Hardware vendors
� Crossbow.com
� Moteiv.com
� Centila.com
� Sunspots
� Imote2

Acknowledgment

� TinyOS 2 tutorials at
http://docs.tinyos.net/index.php/TinyOS_Tuto
rials
� David Moss. Rincon Research Corp� David Moss. Rincon Research Corp
� Some of the slides in this tutorial are taken from

http://www.et.byu.edu/groups/ececmpsysweb/cmp
sys.2008.winter/tinyos.ppt

Thank You!

� Questions ?

� Contact information

� Jing Li – DL 281 (jingl@cse)
� www.cse.ohio-

state.edu/~sridhara/Siefast/WSN_tutorial

� Wenjie Zeng – DL 283
� zengw@cse.ohio-state.edu

